fi
Финансовые инвестиции
образовательный центр
✉ Контакты

Оптимальная партия поставки, EOQ-модель | Economic Order Quantity

Основной целью управления запасами, как одной из составляющих рабочего капитала, является минимизация совокупных расходов на их покупку, доставку и складское хранение. При этом расходы на доставку и хранение демонстрируют разнонаправленное поведение. С одной стороны, увеличение партии поставки приводит к снижению расходов на доставку в расчете на единицу запасов, а, с другой стороны, это приводит к росту складских расходов на единицу запасов. Для решения этой задачи Уилсоном (англ. R. H. Wilson) была разработана методика расчета оптимальной партии поставки (англ. Economic Order Quantity, EOQ), известная также как EOQ-модель или формула Уилсона.

Исходные положения EOQ-модели

Практическое применение EOQ-модели предполагает ряд ограничений, которые должны быть соблюдены при расчете оптимальной партии поставки:

1. Количество потребляемых запасов или закупаемых товаров заранее известно, а их потребление осуществляется равномерно в течение всего планируемого периода.

2. Стоимость организации заказа и стоимость одной единицы запасов остаются постоянными в течение всего планируемого периода.

3. Время поставки является фиксированным.

4. Замена отбракованных единиц осуществляется мгновенно.

5. Минимальный остаток запасов равен 0.

Расчет оптимальной партии поставки

В основе EOQ-модели лежит функция совокупных расходов (TC), которая отражает расходы на приобретение, доставку и хранение запасов.

Функция совокупных расходов

p – цена покупки или себестоимость производства единицы запасов;

D – годовая потребность в запасах;

K – стоимость организации заказа (погрузка, разгрузка, упаковка, транспортные расходы);

Q – объем партии поставки.

H – стоимость хранения 1 единицы запасов в течение года (стоимость капитала, складские расходы, страховка и т.п.).

Для того чтобы рассчитать размер оптимальной партии поставки необходимо продифференцировать функцию совокупных расходов относительно переменной Q и приравнять к 0.

Решив полученное уравнение относительно переменной Q, мы получим оптимальную партию поставки (EOQ).

Оптимальная партия поставки EOQ формула

Графически это можно представить следующим образом:

Оптимальная партия поставки

Другими словами, оптимальная партия поставки представляет собой такой объем (Q), при котором значение функции совокупных расходов (TC) будет минимальным.

Пример. Годовая потребность компании по производству строительных материалов в цементе составляет 50000 т по цене 500 у.е. за тонну. При этом стоимость организации одной поставки составляет 350 у.е., а стоимость хранения 1 т цемента в течение года 2 у.е. В этом случае размер оптимальной партии поставки составит 2958 т.

В этом случае количество поставок за год составит 16,9 (50000/2958). Дробная часть 0,9 означает, что последняя 17-ая поставка будет выработана на 90%, а оставшиеся 10% перейдут остатком на следующий год.

Подставив оптимальную партию поставки в функцию совокупных расходов мы получим 25008874 у.е.

TC = 500*50000 + 50000*350/2958 + 2*2958/2 = 25008874 у.е.

При любом другом размере партии поставки сумма совокупных расходов будет выше. Например, для 3000 т она составит 25008833 у.е., а для 2900 т 25008934 у.е.

TC = 500*50000 + 50000*350/3000 + 2*3000/2 = 25008833 у.е.

TC = 500*50000 + 50000*350/2900 + 2*2900/2 = 25008934 у.е.

Графически потребление запасов можно представить следующим образом, при условии, что их остаток на начало года равен оптимальной партии поставки.

EOQ-модель

Учитывая исходные предположения EOQ-модели о равномерном потреблении запасов оптимальная партия поставки будет вырабатываться до нулевого остатка при условии, что в этот момент будет доставлена следующая партия.